skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McHugh, Theresa A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    In this case study analysis, we identified fungal traits that were associated with the responses of taxa to 4 global change factors: elevated CO2, warming and drying, increased precipitation, and nitrogen (N) enrichment. We developed a trait-based framework predicting that as global change increases limitation of a given nutrient, fungal taxa with traits that target that nutrient will represent a larger proportion of the community (and vice versa). In addition, we expected that warming and drying and N enrichment would generate environmental stress for fungi and may select for stress tolerance traits. We tested the framework by analyzing fungal community data from previously published field manipulations and linking taxa to functional gene traits from the MycoCosm Fungal Portal. Altogether, fungal genera tended to respond similarly to 3 elements of global change: increased precipitation, N enrichment, and warming and drying. The genera that proliferated under these changes also tended to possess functional genes for stress tolerance, which suggests that these global changes—even increases in precipitation—could have caused environmental stress that selected for certain taxa. In addition, these genera did not exhibit a strong capacity for C breakdown or P acquisition, so soil C turnover may slow down or remain unchanged following shifts in fungal community composition under global change. Since we did not find strong evidence that changes in nutrient limitation select for taxa with traits that target the more limiting nutrient, we revised our trait-based framework. The new framework sorts fungal taxa into Stress Tolerating versus C and P Targeting groups, with the global change elements of increased precipitation, warming and drying, and N enrichment selecting for the stress tolerators. 
    more » « less